The Dilemma with Managing Appendicitis

The last several years has seen the pendulum swing from operative to nonoperative to operative management of acute appendicitis. In this month’s Journal of Trauma and Acute Care Surgery, a systematic review of 5 randomized control trials was summarized. The study included over 1,430 patients with uncomplicated acute appendicitis. 7272 underwent nonoperative treatment and 703 underwent operative management.

Here’s a summary of the findings:

  • How effective is operative management vs. nonoperative treatment at 1 year follow up?
    • The nonoperative, or antibiotics, group had a efficacy of 63.8%.
    • The operative or surgery, group had a efficacy of 93%
    • Risk ratio is 0.68; 95% CI, 0.60–0.77 with a p < 0.001
  • Overall complications
    • The operative or surgery, group had a complication rate of 23.6%
    • The nonoperative, or antibiotics, group had a complication rate of 7.7%
    • Risk ratio is 0.32; 95% CI, 0.24–0.43; with a p < 0.001

There was no difference in outcomes for perforated appendicitis, length of hospital stay, duration of pain and sick leave. Leading one to summarize that operative management of acute appendicitis is more efficacious but prone to more complications. At this point, I will still just opt to take out the appendix for my patients. What will you do based upon this information?


Inhibiting SIRP-α & CD47 Interaction Can Prevent T-Cell Mediated Transplant Allograft Rejection

A new discovery from Pitt, in collaboration with the University of Toronto, was published in Friday in the journal Science Immunology that outlines how inactivating dendritic cells ultimately prevents T-Cell mediated rejection of donor allografts. This has profound implications on transplant rejection.

The model is based off the premise that SIRP-α, a marker protein on donor allograft binds to the CD47 receptor on recipient monocytes, inducing them to become dendritic cells which in turn create recipient T cells that attack the donor allograft. Inhibiting this interaction can prevent the attack on the donor allograft, thereby inhibiting rejection without depleting T cells. The video provides this in diagram.

Senior author, Fadi Lakkis, MD scientific director of the Thomas E. Starzl Transplantation Institute at the University of Pittsburgh wants to confirm this by,

“…sequenc(ing) the SIRP-α gene in many humans who are donors and recipients of organ or bone marrow, and then ask whether a mismatch affects the outcome after transplantation.”

How to Grow Human Organs in a Pig

This pig embryo was injected with human cells early in its development and grew to be four weeks old. PHOTOGRAPH COURTESY JUAN CARLOS IZPISUA BELMONTE
This pig embryo was injected with human cells early in its development and grew to be four weeks old. PHOTOGRAPH COURTESY JUAN CARLOS IZPISUA BELMONTE

Every ten minutes, a person is added to the national waiting list for organ transplants. And every day, 22 people on that list die without the organ they need.  Juan Carlos Izpisúa Belmonte, a Salk Institute research, wrote an article for the November 2016 issue of Scientific American describing his dream of using chimeric animals to grow human organs for patients needing transplants. Earlier today, a report in the journal Cell emerged that researchers at the Salk Institute had, for the first time, successfully created human/pig chimera embryos. A big step toward solving the organ donor shortage!

A Squishy Heart Hugging Device Can Keep Blood Pumping In A Failing Heart

Traditionally severe heart failure patients have had their cardiac function supported by ventricular assist devices. I won’t get into too much detail on how that works, but imagine it as an external pump bypassing some blood flow from the ventricle into the aorta. The involved cannulas and bulky devices.

A demonstration of the soft robotic sleeve in a pig. Ellen Rouche/Harvard SEAS
A demonstration of the soft robotic sleeve in a pig. Ellen Rouche/Harvard SEAS

This week a new device, without cannulas was showcased in Science Translational Medicine. The device is a silicone sleeve ribbed with inflatable tubes. The tubes wrap around a waning heart and provides extra muscle. In early tests, the heart-snuggling sleeve restored blood flow in six living pigs after they had suffered acute cardiac arrest. If the thumping tech passes further testing, it could one day help prolong the lives of people with heart failure, an affliction that strikes around 40 million people worldwide.

Experimental Stem Cells Regain Upper Extremity Function In A Paralyzed 21 Year Old

In March, 2016, 21 year old Kris suffered a traumatic injury to his cervical spine when his car fishtailed on a wet road, hit a tree and slammed into a telephone pole. It left him paralyzed from the neck down.

Fast forward to summer. 10 million AST-OPC1 stem cells were injected into his paralyzed. cervical spine.

Two weeks after surgery, Kris showed some improvements. And three months later, he’s able to feed himself, use his cell phone, write his name, operate a motorized wheelchair and hug his friends and family.

Lifting weights is part of Kris Boesen’s regular program of physical therapy. (Photo credit: Greg Iger/Keck Medicine of USC)
Lifting weights is part of Kris Boesen’s regular program of physical therapy. (Photo credit: Greg Iger/Keck Medicine of USC)

AST-OPC1 cells are made from embryonic stem cells by carefully converting them into oligodendrocyte progenitor cells (OPCs), which are cells found in the brain and spinal cord that support the healthy functioning of nerve cells. This study is a part of a Phase 1/2a clinical trial that is evaluating the safety and efficacy of escalating doses of AST-OPC1 cells developed by Fremont, California-based Asterias Biotherapeutics.

Gauss Surgical’s First Mobile Real-Time Estimation of Surgical Blood Loss App


Eliminates Need for Visual Estimation by Providing Accurate Estimates of Blood Loss on Surgical Sponges During Surgery.

When I scrub into cases it is often hard to estimate how much blood was lost between the sponges, vacuum suction, and drops. Gauss Surgical just received FDA approval for its Triton Fluid Management System, an iPad app that estimates, via a proprietary algorithm, blood loss in surgical sponges just by looking at them. Looks interesting, I wonder when it’ll be implemented at my hospital?


If I had a house, I would install the radiator, Blush, by Icelandic designer Thorunn Arnadottir, which is covered in thermochromatic paint and both looks like and acts like capillaries.

A Map of the World Represented By Human Cells – By Odra Noel

A Map of the World Represented By Human Cells - By Odra Noel
A Map of the World Represented By Human Cells – By Odra Noel

Odra Noel, artist and doctor, painted this map of human cells representing continents and nations. It is on show from 2 July at the Royal Society’s Summer Science Exhibition in London. Here’s a paraphrased explanation of what each cell type symbolizes, which I swiped from the exhibition’s website:

  • North America struggles with rising obesity, and this adipose tissue is more beautiful close up than you would imagine.
  • Pulmonary tissue represent Central and South America where smoking and respiratory infections are a leading cause of death.
  • Europe, with its ageing population, suffers greatly from neurodegenerative diseases, including dementia and is represented with neurones, brain tissue.
  • Cardiac muscle cells represent the Middle East and Asia as these regions have rising levels of hypertension and other causes of heart and cardiovascular failure.
  • The far East and the Pacific look beautiful in pancreatic acinar tissue; representing pancreatic failure or diabetes, a major problem in this area, often described as a diabetes epidemic.
  • Greenland is sparse, dotted with a few sperm cells because infertility is a big problem there.
  • The only artery is in the middle of the Amazon rainforest, the largest river in the world.
  • Hidden are five mitochondria, the organelle responsible for producing energy and the current focus of much research into their key roles in death, disease and ageing.

Treating the Worst Wounds with RNA-Laced Bandages

My life has much changed since leaving the world of molecular biology and into clinical medicine. I do not miss the long hours pipetting over the lab bench, frustrated over a failed 4 hour PCR. Instead, I look forward to quickly working up and treating patients. On the other hand, I have found far too many uninspired clinical publications. I miss reading an outstanding publication in the journal Nature or Science on a new second messenger system and imagining up all changes now because of this discovery.

So when the two intersect, I love it. Today, I’ll be sharing with you an example of this intersection; an example of translational medicine, the conversion of scientific discovery into what I believe will be overall health improvement…

Continue reading “Treating the Worst Wounds with RNA-Laced Bandages”